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Motivation: Solution:

 However, since there is no manually In this paper, we propose to disentangle long and short-
annotated label for user interests, existing term interests for recommendation with a contrastive
approaches always follow the paradigm of learning framework, CLSR.

entangling these two aspects, which may lead
to inferior recommendation accuracy and
interpretability.
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Figure 2: Our proposed CLSR framework based on self-
supervised learning. A) contrastive tasks on the similarity
between representations and proxies of LS-term interests to
enhance disentanglement; B) long-term interests encoder ¢;
C) short-term interests encoder |; D) adaptive fusion of LS-
term interests with attention on the target item and histori-
cal interactions; E) interaction prediction network.
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o time: t — 1 U: user t: timestamp
U;: long-term interests V:item

. 0 0 U;: short-term interests  Y: interaction
o time: t

f1 3 Long-term Interests (=
Representation o @ @
f2 ; Short-term Interests

Evolution
Figure 1: User interests modeling { (best viewed in color)
which consists of three mechanisms, namely long-term in-
terests representation (red edges), short-term interests evo-
lution (blue edges) and interaction prediction (yellow edges).
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Figure 2: Our proposed CLSR framework based on self-
supervised learning. A) contrastive tasks on the similarity
between representations and proxies of LS-term interests to
enhance disentanglement; B) long-term interests encoder ¢;
C) short-term interests encoder |; D) adaptive fusion of LS-
term interests with attention on the target item and histori-
cal interactions; E) interaction prediction network.
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Figure 2: Our proposed CLSR framework based on self-
supervised learning. A) contrastive tasks on the similarity
between representations and proxies of LS-term interests to
enhance disentanglement; B) long-term interests encoder ¢;
C) short-term interests encoder |; D) adaptive fusion of LS-
term interests with attention on the target item and histori-
cal interactions; E) interaction prediction network.
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Figure 2: Our proposed CLSR framework based on self-
supervised learning. A) contrastive tasks on the similarity
between representations and proxies of LS-term interests to
enhance disentanglement; B) long-term interests encoder ¢;
C) short-term interests encoder |; D) adaptive fusion of LS-
term interests with attention on the target item and histori-
cal interactions; E) interaction prediction network.

Method

{
Pt = MEAN({xf. - ') = = 3 EGel), (17)

1
py’ = MEAN({x}" m,m,x;‘}}=EZE(r?_j+,}, (18)
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(25)
where we omit the superscript of interest representations and prox-
ies, and f can be either L}, or Liyi.
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Figure 2: Our proposed CLSR framework based on self-
supervised learning. A) contrastive tasks on the similarity
between representations and proxies of LS-term interests to
enhance disentanglement; B) long-term interests encoder ¢;
C) short-term interests encoder |; D) adaptive fusion of LS-
term interests with attention on the target item and histori-
cal interactions; E) interaction prediction network.
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Table 1: Statistics of the two datasets used in experiments.

Dataset  Users  Items  Instances Average Length

Taobao 36,915 64,138 1,471,155 39.85
Kuaishou 60,813 292286 14,952,659 245.88

Table 2: Overall performance on Taobao and Kuaishou datasets. Underline means the best two baselines, bold means p-value
< 0.05, * means p-value < 0.01, and ** means p-value < 0.001.

Dataset Taobao Kuaishou

Category Method AUC GAUC MRR NDCG@2 | AUC  GAUC MRR NDCG@2

NCF 0.7128 0.7221 0.1446 0.0829 0.5559  0.5531  0.7734 0.8327

Long-term DIN 0.7637 0.8524 0.3091 0.2352 0.6160 07483  0.8863 0.9160

LightGCN | 0.7483 0.7513 0.1669 0.1012 0.6403  0.6407  0.8175 0.8653

Caser 0.8312 0.8499 0.3508 0.2890 0.7795  0.8097  0.9100 0.9336

GRU4REC 0.8635 08680 0.3993 0.3422 0.8156 0.8298 0.9166 0.93584

Short-term DIEN 0.8477 0.8745 0.4011 0.3404 0.7037 0.7800 (.9030 0.9284

SASRec 0.8598 0.8635 0.3915 0.3340 0.8199  0.8293  0.9161 0.9380

SURGE 0.8906 0.8888 0.4228 0.3625 0.8525 0.8610  0.9316 0.9495

LS-term SLi-Rec 0.8664 0.8669 0.3617 0.2971 0.7978 0.8128  0.9075 0.9318

Ours 0.8953""  0.8936"° 0.4372"° 0.3788"" | 0.8563 0.8718 0.9382° 0.9544"
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Figure 3: Comparison of using single and both interests be-
tween CLSR and Sli-Rec.

Table 3: Comparison between CLSR and SLi-Rec on predict-

ing click and purchase/like. On Taobao dataset, @ of CLSR for purchase

Click Purchase/Like behayior Is larger than cIicI§ by about 4%. Hovyever,
AUC  AVG(e) | AUC AVG(er) for SLi-Rec, a for purchase is even less than click by
over 6%. On Kuaishou dataset, though «a for like is
CLSR | 0.8885  0.3439 | 0.8616 0.3568 (+3.75%) Iarlggr than click mf bO]Eh SCLIEEG'C and CLSR’. the
SLi-Rec | 08153 07259 | 07924 07543 (+3.91%) relative increment of a for Is over two times

CLSR | 0.8618 02528 | 0.7946 02757 (+9.06%)  arger than Sli-Rec (+9.06% v.s. +3.91%).

Dataset Method

SLi-Rec | 0.8572 0.4651 0.8288 0.4350 {-ﬁ--d?ﬁ-]
Taobao

Kuaishou
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Table 4: Counterfactual evaluation under shuffle protocol.

Click Purchase/Like
Dataset | Method AUC MRR AUC MRR

Taobao SLi-Rec | 0.8092 0.2292 | 0.8480 0.3151
CLSR | 0.8413 0.2744 | 0.8790 0.4194

Kiaishoy | SLRec | 07992 0.9088 | 08165  0.9113
Halshou 1 ~1sr | 0.8431 0.9380 | 0.8197 0.9167

vy (Vs (V3 (Vg (V5| (12 s (171 |74
factual: original

counterfactual: shuffle counterfactual: truncate

Figure 4: Counterfactual evaluation. Shuffle: short-term in-
terests are removed by shuffling. Truncate: long-term inter-
ests are weakened by discarding early history.
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Figure 5: Counterfactual evaluation under truncate protocol.
(a) CLSR. (b) CLSR with only long-term interests.
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Figure 6: (a) Ablation study of contrastive loss. (b) Hyper-
parameter study of f.
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Figure 7: Cnmi;arisnn between adaptive and fixed fusion.



@ Chongging University Advangd'TAeclhnique .

of Technology

Artificial Intelligence

Thanks



